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Algebraic Geometry in Oscar

Together with J. Böhm, S. Brandhorst, W. Decker, and A. Frühbis-Krüger we
develop the frameworks for Algebraic Geometry and Commutative Algebra
within the computer algebra system Oscar [25].

X = {x3 + y3 + z3 = 0} ⊂ P2
C

Varieties Coherent sheaves
F = TX ,
F∨ = Ω1

X = HomOX
(TX , OX)

dimC H1(X, OX) = dimC H0(X,Ω1
X) = g(X) = # holes in X

Many of the most fundamental invariants of algebraic varieties can be
expressed as cohomology groups of coherent sheaves H i (X ,F).



Algebraic Geometry in Oscar

A more involved example [27]: Suppose X = {φ ∈ C2×3 : rank φ < 2} is a
generic determinantal variety and f : C2×3 → Ck a function with an isolated
singularity on X in the stratified sense.

Let ν : X̃ → X be the Nash transform for the top-dimensional stratum of X .

T̃

��
X̃

ν

��

� � ι̃ // P1 × P2 × C2×3

π

��

π∗f ,π∗ l

&&
X
� � ι // C2×3 f ,l // Ck

We wish to compute the Milnor number µ(4; f ) =
∑k

j=1 λj(4; f , l) associated
to the top-dimensional stratum of X with

λj(4; f , l) = χ

Rν∗

 Kosz(ν∗(f1, . . . , fj−1, lj+1, . . . , lk)
⊗

ENC(ν∗(df1, . . . , dfj , dlj+1, . . . , dlk)

− χ (. . . )

for some sufficiently generic linear map l : C2×3 → Ck .



Algebraic Geometry in Oscar

A more involved example (continued): This computation requires

complexes C• of multigraded modules M over the ring

S = (C[xi,j : i = 1, 2, j = 1, 2, 3]︸ ︷︷ ︸
C2×3

)[u0, u1︸ ︷︷ ︸
P1

, v0, v1, v2︸ ︷︷ ︸
P2

]

Cartan-Eilenberg resolutions, Koszul complexes, Eagon-Northcott
complexes, tensor products of complexes, induced homs, ...

computation of the direct image of a complex of sheaves F• associated to
a complex of graded modules F• = C̃• along the projection

π : P1 × P2 × C2×3 → C2×3.

in particular, this calls for an implementation of the functoriality

φ : F → G︸ ︷︷ ︸
∈HomCoh(... )(F,G)

given by Φ: M → N︸ ︷︷ ︸
∈HomS (M,N)

↓
Rπ∗(φ) : Rπ∗F → Rπ∗G︸ ︷︷ ︸

∈HomC(C[x]−Mod)(...,... )



“Sheaf algorithms using the Exterior Algebra”

by Decker and Eisenbud [14], and “Relative Beilinson monad and Direct Image
for Families of coherent sheaves” by Eisenbud and Schreyer [17].

Theoretical foundations: Bernshtein-Gel’fand-Gel’fand [7] and Beilinson [6].

Package: “BGG: Bernstein-Gel’fand-Gel’fand correspondence” [1] in
Macaulay2 [22] and “sheafcoh.lib” in Singular [15].

Capabilities: Suppose S = R[x0, . . . , xn] is the homogeneous coordinate ring
for Pn

R with R some commutative Noetherian ring.

When R = k is a field, compute the numbers hi (Pn,F) of a sheaf F = M̃
on Pn

k for a field k.

Let R be a polynomial ring and π : Pn
R → SpecR the projection. Compute

the complex Rπ∗(F) ∈ Db(SpecR) for a sheaf F = M̃ for a finitely
generated S-module M.

Compute induced maps in cohomology for a morphism
φ :
⊕r

i=0 S [−di ]→
⊕s

j=0 S [−ej ].

Desirable additional functionality:

Compute the induced maps on the direct images for a morphism of
arbitrary graded S-modules φ : M → N and vice versa for complexes
thereof.



“Tate resolutions for products of projective spaces”

by Eisenbud, Erman, Schreyer [16], [18].

Software: “TateOnProducts” [19] in Macualay2 and
“tateProdCplxNegGrad lib” in Singular.

Capabilities: Suppose S = k[xi,j : i = 1, . . . , n, j = 0, . . . , rn] is the
homogeneous coordinate ring of a product of projective spaces
P = Pr1 × · · · × Prn over a field k and F = M̃ is a coherent sheaf on P for some
(multi-) graded S-module M.

Compute the direct image Rρ∗(F) for the projection
ρ : P→ Prj1 × · · · × Prjp to any subset 0 < j1 < · · · < jp ≤ n of the factors
of P.
Suppose F is supported on a reduced subscheme X ⊂ P and we have a
morphism φ : X → Pm. Compute the direct image Rφ∗(F).

Desirable additional functionality:

Extend the domain from graded S-modules to complexes of graded
S-modules φ : M• → N• and their sheafifications.

Compute the induced maps

Rρ∗(φ̃) : Rρ∗F• →Rρ∗G•



BGG for toric varieties

Fairly recently, Brown and Erman published a method to compute sheaf
cohomology on toric varieties via a BGG correspondence [11], [10].

This has been integrated in the Macaulay2 package “MultigradedBGG” by
Banks et. al [2].



CohomCalg

Blumenhagen, Jurke, Rahn, and Roschy [8], [9], Roschy and Rahn [26], and
Shin-Yao [24]. Widely accepted in the Physics community as the fastest way to
compute cohomology of toric line bundles.

Software: High performance C++ library published on GitHub [12]; interfacing
possible e.g. from Macaulay2 or Oscar.

Capabilities: Given a compact toric variety X over Q and a toric line bundle L,
compute the numbers hi (X ,L).

Theoretical foundation: The algorithm is based on Čech-cohomology and a
sophisticated count of rationoms, using the Stanley Reisner ideal of X .

Desirable additional functionality: It would be great to have the functoriality
for

φ : L → L′ ⇝ H i (φ) : H i (X ,L)→ H i (X ,L′).



CAP/HomAlg

Software and theoretical foundations for computational homological algebra by
Barakat et. al. [5], [4], [3].

Software: See the GitHub of the CAP project or the julia package
CAPAndHomalg.jl.

Scope: Formalize the categorical language for computations in homological
algebra and in particular sheaves. Capabilities to provide custom compiled
“core engines” to carry out specific computational tasks.

This has been part of OSCAR in an earlier stage; eventually we will look into
utilizing some aspects again!

https://github.com/homalg-project/CAP_project
https://juliapackages.com/p/capandhomalg


Čech- and local cohomology

Let S = k[x0, . . . , xn] be the homogeneous coordinate ring of Pn
k with maximal

ideal m and F = M̃ a coherent sheaf on Pn for some graded S-module M.

We have [23]

H i (Pn,F) ∼= H i+1
m (M)0 ∼= lim

k→∞
Exti+1

S (S/mk ,M)0

for i > 0 and a short exact sequence

0 // H0
m(M)0 // M0

// H0(Pn
k ,F)0 // H1

m(M)0 // 0

for H0(Pn,F). Moreover,

lim
k→∞

ExtiS(m
k ,M) ∼= lim

k→∞
H i (Kosz∗(xk

0 , . . . , x
k
n ;M)) ∼= H i (Č•(U;M))

for the standard covering U =
⋃n

i=0{xi ̸= 0}; see e.g. [23, Theorem 2.3].

Note: These modules are not finitely generated over S!

The methods can be extended to work for modules over the Cox ring of a toric
variety [13] and for the case where k is not a field but a Noetherian
commutative ring.



Commutative and Homological Algebra in OSCAR

In OSCAR we have support for

((multi-) graded) polynomial rings, quotient rings, and various localizations

((multi-) graded) finitely generated modules over such rings

complexes, double complexes, and, more generally, hypercomplexes of
arbitrary dimension over such modules

additional functionality for complexes such as Hom(−,−), −⊗−, forming
Koszul- and Eagon-Northcott complexes, passing to Cartan-Eilenberg
resolutions, forming total complexes, taking strands of a given degree,
pruning complexes, . . .

the functorial properties of all these constructions

All of the homological algebra is implemented in a lazy way. We write as much
generic code as possible – greatly influenced by the HomAlg project.

The various high performant backends like Singular [15], Polymake [21], Nemo
[20], etc. provide us with reasonable speed for many computations.



Spectral sequences in Čech cohomology [28]

Suppose π : P = Pr1
R ×R · · · ×R Prn

R → SpecR is a product of projective spaces
over SpecR; let

S = R[xi,j : i ∈ {1, . . . , n}, j ∈ {0, . . . , ri}], deg(xi,j) = ei ∈
n⊕

i=1

Zei ∼= Zn

be its homogeneous coordinate ring. Suppose (M•, φ•) is a suitably bounded
complex of finitely generated S-modules. Passing to a free resolution of this
complex we may assume

M i =

bi⊕
j=1

S [−di,j ]

to be free for some shifts di,j ∈ Zn. Now

Rπ∗(M̃
•) = Tot

(
lim
−→
k

HomS (F
•
k ,M

•)

)
0

= lim
−→
k

Tot (HomS (F
•
k ,M

•))0

where lim←−F •
k is the inverse limit given by resolutions of powers of the irrelevant

ideal
m = ⟨xj1 . . . xjn : 0 ≤ jk ≤ rk⟩ ⊂ S .



Spectral sequences in Čech cohomology [28]

We obtain a direct system of double complexes

...

��
HomS(F

•
k−1,M

•)0

uu ��
limk→∞ HomS (F

•
k ,M

•)0 HomS(F
•
k ,M

•)0oo

��
HomS(F

•
k+1,M

•)0

ii

��
...

where we have data types for the terms on the right hand side.

In theory, there exists k0 ∈ N so that for k ≥ k0 one has

Rπ∗(M̃
•) ∼=qis Tot (HomS (F

•
k ,M

•))0 .



Spectral sequences in Čech cohomology [28]

x

y

d = −4

k = 1
k = 2

k = 3
k = 4

x

y

d = −4

k = 1

k = 2

k = 3

k = 4

⊕

↓ ∂̌

x

y

d = −4

k = 1

k = 2

k = 3

k = 4

Figure: The Čech complex for OP1 (−4)



Spectral sequences in Čech cohomology [28]

Spelling out the terms of limk→∞ HomS(F
•
k ,M

•):

...

∂̌

��

HomS

(
F q
k+1,

⊕
j S [−dp,j ]

)
0

∂̌

��

HomS

(
F q
k+1,

⊕
j S [−dp+1,j ]

)
0

φoo

∂̌

��

· · ·
φoo

HomS

(
F q
k ,
⊕

j S [−dp,j ]
)
0

∂̌

��

55

HomS

(
F q
k ,
⊕

j S [−dp+1,j ]
)
0

∂̌

��

44

φoo · · ·
φoo

HomS

(
F q+1
k+1 ,

⊕
j S [−dp,j ]

)
0

∂̌

��

HomS

(
F q+1
k+1 ,

⊕
j S [−dp+1,j ]

)
0

∂̌

��

φoo · · ·
φoo

HomS

(
F q+1
k ,

⊕
j S [−dp,j ]

)
0

∂̌ ��

44

HomS

(
F q+1
k ,

⊕
j S [−dp+1,j ]

)
0

44

∂̌ ��

φoo · · ·
φoo

...
...

...
...

Does this form. . .

. . . a limit of double complexes of homs of direct sums?

. . . a double complex of limits of homs of direct sums?

. . . a double complex of direct sums of limits of hom-modules?

In theory there is no difference, but in practice there is!



Spectral sequences in Čech cohomology [28]

ι k

q

φ

∂̌

p

bpM

j=1

S[−dp,j ]

Kosz∗(x3; S)dp,j

bpM

j=1

Kosz∗(x3; S)dp,j

original complex of S-modules

direct limit of 
double complexes

k = 1
k = 2 k = 3



Spectral sequences in Čech cohomology [28]

Problem: Computing the direct image for the previous example from a direct
limit of double complexes takes ≥ 1 month of computation time.

Observe: There is a massive redundancy in the columns of this limit of double
complexes!

lim
k→∞

HomS

(
F •
k ,
⊕
j

S [−dq,j ]

)
0

∼=
⊕
j

 lim
k→∞

HomS (F
•
k , S)︸ ︷︷ ︸

one single limit


−dq,j

and the Čech maps respect these direct sums.

Idea: Cache the constituents of this single limit and its strands in a context
object and recombine the spectral sequence

E p,q
1 =

⊕
j

Hq
(
lim

k→∞
HomS(F

•
k ,M

p)
)
−dp,j

⇒ Hp+q
(
lim

k→∞
Tot (HomS(F

•
k ,M

•))0

)
from that.

Result: We can compute the spectral sequence for the direct image complex in
the previous example in ≤ 2 hours on a laptop!
of OSCAR.



Conclusions and Outlook

Čech cohomology is not dead!

Instead of computing higher direct images, it is usually faster to compute
a spectral sequence converging to its homology.

Implementation of functoriality is crucial!

We have the foundations laid out in OSCAR; how about extending these
ideas to. . .

. . . cohomology of coherent sheaves on toric varieties?

. . . direct images under toric morphisms?

. . . using BGG machinery in conjunction with caching objects?

Feel free to reach out to us on GitHub or Slack:

https://www.oscar-system.org/!

https://www.oscar-system.org/
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Čech cohomology. 2025. arXiv: 2506.02636 [math.AG]. url:
https://arxiv.org/abs/2506.02636.

https://doi.org/10.1063/1.3562523
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3562523/15639646/033506\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3562523/15639646/033506\_1\_online.pdf
https://doi.org/10.1063/1.3562523
http://www.oscar-computeralgebra.de
https://doi.org/10.1063/1.3501135
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3501135/15605886/103520\_1\_online.pdf
https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3501135/15605886/103520\_1\_online.pdf
https://doi.org/10.1063/1.3501135
arXiv:2411.02682
https://arxiv.org/abs/2506.02636
https://arxiv.org/abs/2506.02636

	References

